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Abstract

In this paper, from the inverse Weibull distribution, a new bi-parametric distribution is proposed.
This new distribution has support in (0, 1), being an alternative to other distributions for double
limited data analysis. Based on this distribution, a regression model is proposed. This model has
a regression structure at the median and is called the unit inverse Weibull regression model. The
maximum likelihood method is used to obtain the estimates of the unknown parameters. Analytical
expressions for the score vector and for the Fisher observed information matrix are performed. The
good performance of the maximum likelihood estimators, for the proposed model, is demonstrated
through Monte Carlo simulations. The usefulness of the model is shown through an application
to real data. In this application, the proposed model is superior to beta, Kumaraswamy and unit
Weibull regression models.
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1 Introduction

In data analysis, several phenomena are defined in the unit interval, such as rates, proportions, and
the human development index. The distributions most often used to model these types of data are the
beta and Kumaraswamy distributions.

In recent years there has been a growing number of proposals of new distributions for the unit
interval. These new distributions are alternatives to the beta and Kumaraswamy distributions. Some of
these new distributions are: log-Lindley (Gémez-Déniz et al., 2014), unit-Weibull (Mazucheli et al.,
2018), log-xgamma (Altun and Hamedani, 2018), unit Gompertz (Mazucheli et al., 2019), log-Bilal
(Altun et al., 2021), unit log-logistic (Ribeiro-Reis, 2021).

In this paper, based on a transformation of the inverse Weibull distribution, a new distribution for
the interval (0, 1) is proposed, called the unit inverse Weibull. This new distribution, is asymmetric
and has simple forms for the cumulative distribution function (cdf) and for probability density function
(pdf), in contrast to the beta distribution, which depends on special functions such as the gamma
function and the incomplete beta function.
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Under reparameterization, a new regression model for the unit interval is introduced. Here, the
response variable is assumed to follow the unit inverse Weibull distribution and the regression structure
is done on the median. Application to real data shows that this regression model is better than the
popular beta (Ferrari and Cribari-Neto, 2004) and Kumaraswamy (Mitnik and Baek, 2013) regression
models.

The rest of the paper is organized as follows. In Section 2, the unit inverse Weibull distribution
is introduced. In Section 3, a reparameterization on the median is taken. In Section 4, a regression
model is proposed. The estimates of the unknown parameters by the maximum likelihood method is
discussed. In Sections 5 and 6, respectively, Monte Carlo simulations and application to real data show
the good performance of the regression model. Finally, the Section 7 concludes the paper.

2 Unit inverse Weibull distribution

The Weibull distribution is one of the most famous continuous distributions. It is a distribution
that is indexed by two parameters and plays a very important role in positive data analysis, mainly in
survival analysis. The cdf of the Weibull distribution is defined by

Fy(v; A, ¢) =1 —exp [—Av‘ﬂ , v>0,

where where A > 0 is scale parameter and ¢ > 0 is shape parameter.
Let V' is a random variable with Weibull distribution, then the random variable 7' = 1/V/, will have
inverse Weibull (IW) distribution, and its cdf and pdf are given by

F(t;X,0) = exp [-M77], >0

and
fIW(t; /\7 ¢) = /\(Z)t_¢_1 eXp [_)\t_¢] ) t > 07

respectively, where A > 0 is scale parameter and ¢ > 0 is shape parameter.
Taking Y = exp(—T), the cdf and pdf of Y are

F(y; A, ¢) =1 —exp [-A(=1logy) %], 0<y<1 (M
and v
fy; X, 0) = ?(— logy) *exp [-A(=logy) ], 0<y<l, 2

respectively. The random variable Y with pdf (2) has unit inverse Weibull (UIW) distribution and is
denoted as Y ~ UIW (A, ¢). Figure 1 presents some forms for the density function (2). Note that the
density function of Y ~ UIW(), ¢) can have decreasing, U-shaped, U-unimodal, right-skewed and
left-skewed shapes.

The corresponding failure rate function (frf) of Y is

A o
T‘(y;A,fb)f(lOgy) o 0<y<l

Note that the parameter ) is of acceleration, it does not influence in the shape of the frf. The first
derivative of the log-frf is

£) = Llogr(y: A, ¢) = —; (64 1)

dy ylogy’
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Figure 1: Plots of the pdf of Y for selected parameters.

From £(y) = 0, the root is yo = exp(—¢ — 1). Note that yo € (0, 1) of fact. The parameter ¢
controls the shape of the frf of Y, and it is seen that })in% yo = exp(—1) and qzblim 1o = 0. Then for
—> — 00

large values of ¢, yo tends to 0 and the frf is increasing. In turn, for very small values of ¢, y, tends to
exp(—1), and then the frf of Y assumes the shape of bathtub.

Taking second derivative of the log-frf,
2

§(y) = e

Evaluating in yq,

f/(yo) =

1
logr(y; A, ¢) = 7 +(p+1)

1
yg(1+2¢ + ¢?)

1+ logy
y*(logy)*”

> 0.

So, yo corresponds to a minimum point. Thus, the frf can have the shape of a bathtub, which is a
very high merit for a bi-parametric distribution. Figure 2 shows some shapes of the frf of Y. It is noted
that the frf of Y can assume the increasing and bathtub forms.
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Figure 2: Plots of the frf of Y for selected parameters.
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By inverting F'(y; A, ¢) = u, the quantile function is given by
Q(u; N, @) = exp {—[—)\71 log(1 — u)]71/¢} , O<u<l1.
For v = 1/2, the median is obtained. So, the median of Y is

median(Y’) = exp {—[-\"'log 0.5] 7/} .

3 Parameterization in the median

Taking median(Y’) = 7 and solving for J, it follows

log 0.5

A= T g+

Under parameterization on median, the cdf (1) and pdf (2) becomes

omy\—¢
P(y;m,¢) =1 — 27 (1) 3)
and
¢log0.5 (logy —ot _(1ogy)*¢
fly;m.¢) = 2 \osr/ “
ylogT \logT

respectively, where 0 < 7 < 1 is the median parameter and ¢ > 0 is shape parameter. The random
variable with pdf (4) is denoted as Y ~ UIW(7, ¢). Figure 3 presents some shapes of the density
function of Y ~ UIW(T, ¢).
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Figure 3: Plots of the pdf of Y under parameterization in the median, for selected parameters.

The quantile function corresponding to cdf (3) is

my
Q(u; 7, ¢) = exp {bg(r) [loifglo_;)} } , 0<u<l.
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Note that Q(0.5; 7, ¢) = T, as expected. Since that 7 denotes the median of Y ~ UIW(7, ¢). Using
the quantile function, the random variable

log(1—U)]"*
Y =exp {10g(7‘) [%;(gg().i’))] } Q)

has density function (4), where U is a uniform random variable over the interval (0, 1).

4 Regression model

Let the independent random variables Y; ~ UIW(7;, ¢), with observed values y;, i = 1,--- , n.
The proposed regression model for the median of y; is given by

k
ni=g(r) =x{B=" TimPum, (6)
m=1
where 3 = (Bi,...,5)" is k-vector of unknown parameters, X; = (;1,...,2;)' is vector of k

covariates (k < n), which are assumed fixed and known and 7); is the linear predictor. For model
with intercept, it is assumed that x;; = 1, V4. The g(-) is a link function strictly monotonic and twice
differentiable. Since 7 € (0, 1), the g(-) link function must map the interval (0, 1) to the reals, i.e.,
g : (0,1) — R. Examples of some link functions can be the quantile functions of the following
distributions: standard logistic, standard Gumbel type I, standard Gumbel type II and standard Cauchy.
Thus, these link functions are:

* logit: g(7) = log[r/(1 — 7)];

* Gumbel type I: g(7) = — log(—log 7);

* Gumbel type II: g(7) = log[— log(1 — 7)];
* Cauchy: ¢g(7) = tan(w (7 — 0.5)).

Several estimation methods can be adopted to estimate the model parameters, such as ordinary least
squares, percentiles, maximum product of spacing, Bayesian and maximum likelihood. By simplicity
and for having an asymptotic distribution for the estimators, the maximum likelihood method is then
adopted in this paper.

The log-likelihood function for a sample of n independent observations with pdf (4), under the
structure of the regression model (6), is given by

L(B, o) = Zﬁi(ﬂy ),
i=1

where

7

log 0.5 I i
Li(ri,8) =log ¢ + log [ ~2—) —logy; — (¢ + 1) log ( o2
log T; log 7,

log 7; ¢
~ log(2) <10gy-> '
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The first derivatives of £;(7;, ¢) with respect to ; and ¢ are

OL(7:, ) 1 6+1  ¢log(2) (logr: )"
- _ + —
oT; T logT;,  mlogm  mlogy; \logy;
¢ ¢log(2) (logr )’
K logm; 7 logm; \logy;
=bi(1 = ). @
oL (ti, ) 1 <log Ti> <1og Ti>¢ log 7
———— =—+log — log(2 log | ——
06 0 \iogy) 1% Loy, logy:
1
=—+ Ui — Yills, 8)
¢

¢
respectively, where b; = #én, 9 = log(2) (h‘jﬁ;‘) and §j; = log (}ggg) .

The differential total of £(f, ¢) is given by

LB, ¢) _ i OLi(7i,9) dr; O
ap; a i1 or,  dn; 0B’

oL ) g a‘cz i)

Usl8,9) = éi Doy é; 2,

i=1

UB]’ (ﬁa ‘ZS) =

Note that, d7;/dn; = 1/¢'(;) and On;/03; = x;;, then the score vector of /3; and ¢ are given by

Us; (B, ¢) = Z %%‘j,

i=1

U¢(57 ¢) = Z Ci,
i=1

respectively, where ¢'(7;) = dg(r;)/dm, w; = b;(1 — ;) and ¢; = i + ¥ — il
In matrix form, the score vector of 3 and ¢ can be written as Us(3, ¢) = X "Qw and Uy(3, ¢) =
c"1,, respectively, where X is an x k matrix whose ith row is X, , Q = diag{1/¢'(m1),- -+ ,1/¢'(7.)}
(diagonal matrix), w = (wy,--- ,w,)", ¢ = (c1,+-- ,¢,) " and 1, is a n-dimensional vector of 1’s.
The maximum likelihood estimators (MLEs) of 3 and ¢, says B and QAﬁ, are the solutions of

Us(B,¢) =0,
Us(B,¢) =0,

which do not have closed-form expressions. Thus, these estimates are obtained through numerical
optimization. These days with advanced computing, it can be done without any difficulty. These
iterative processes require initial values for the parameters. Initial guesses for 3 can be the ordinary least
squares estimator of the regression of g(y) on X. So, initial guess for 3 is () = (XTX)' X Tg(y).
For ¢, the initial guess is #(*) = 1. Some software that can be used to obtain these MLEs are: Ox
Console (Doornik, 2018) with MaxBFGS function and R Project (R Core Team, 2020) with optim
or nlminb functions.
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4.1 Observed information matrix

Note that, the second derivatives of £(3, ¢) are given by

82£(57¢)_ —~ 0 OLi(1i,0) 1 B dr; On;
98,08, _Z ari< a7, g/(n)”:”)

dn; 9B,
PLi(1i,0) 1 OLi(7:, ) ¢"(7:)
fz ( T p (Ti)gl'ijxil - gl)%xljxll>
LB, 9) 0*Li(ri9) 1
98,00 Z 3Tl8¢ g(r) () L
PLB9) 5~ PLilr0)
T& _; a¢2 )

where ¢"(7;) = d*g(r;)/dr?. If g(-) logit link function, then ¢'(;) = 1/(m; — 77) and ¢"(7;) =
—(1 = 27)/(1; — 77)%. Already for g(-) Cauchy link function, ¢'(7;) = 7/ cos(w(r; — 0.5))? and
g" (i) = 2r? tan(w(r; — 0.5))/ cos(m(7; — 0.5))2.

From Equations (7) and (8),

0L (1i,¢) _ ¢(1+logT) \ 0.
67.1? - (TilOgTi)Q ( _yl) _bzyl = Di,
37’18(/5 _Ti lOg Ti

6‘612(7_77(15) _ 1 .o
T&__E_yiyi =S

Finally, the second derivatives are

— by =r

iy

QL(Ba ¢) _ = pi Q/I(TZ')
T =2 (o w )

~\y g
PLB.®) T
08;00 *Z )

19
LB D) ¢
78(]52 —;SZ
Let P = diag{pla e 7pn}7 R = diag{wlg//(T1)7 e 7wng”<7—n)}7 r = (Tla o
(517 e ;Sn)T~

~,rp)" and s =
In matrix form, this expressions can be written as
Uss(B,¢) =X"PQ*°X — X'RQ*X,

Use(B,0) =Uss(B.¢)" = X' Qr,
U¢,¢(ﬁ, ¢) :ST]_n.

The Fisher observed information matrix is given by

_ | Uss(B,9) Uﬁqﬁ(ﬂ,qﬁ)]
76.0==| 50 Ty
B X'TPQ?’X - X"RQ*X X'Qr
- { r'QX sT1, }
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Under the usual regularity conditions of the MLEs, for n large,

(0) = s ((0)oior),

where ~ denotes asymptotic distribution. So, confidence intervals and hypothesis testing can be
performed using the normal distribution. Based on asymptotic distribution, the 100(1 —~)% confidence
intervals for 3; and ¢ are given by

Bi % 20-nymy/Liy and 6% 20/ Lgangen, 4 =1k, ©)

respectively, where z(_./9) is the (1 — 7/2) quantile of the standard normal distribution and L;;
denotes the jth diagonal element of the matrix 7 (3, ¢) L.

4.2 Diagnostic analysis

The analysis of residuals is crucial to check the adequacy of the estimated model. Here, we will
discuss the Dunn-Smith residuals (Dunn and Smyth, 1996) residuals, which are given by

7 = Qn(F(yi: 75, 9))s

where F'(y;; 7, (;3) is the cdf (3) evaluated in 7; and ¢, and Q x (+) is the quantile function of the standard
normal distribution. If the model is valid, the Dunn-Smith residuals approximately follow the standard
normal distribution. Thus, the Dunn-Smith residuals have a behavior around zero with about 95% of
the values in the interval (—2, 2).

Simulated envelope plot (Atkinson, 1985) of the Dunn-Smith residuals can be used to check the
quality of the estimated model. The simulated envelope plot can be produced as follows:

1. Estimate the model and generate a sample with n observations, considering the estimated model
as the true model;

2. Estimate the model of the generated sample and calculate the ordered Dunn-Smith residuals;
3. repeat the steps 1 and 2 k times;

4. From the k groups of the Dunn-Smith ordered residuals, compute the mean, median, minimum
and maximum.

The envelope is determined by the minimum and maximum values. If a large number of points of
the Dunn-Smith residuals are outside the envelope, then this is evidence against the adequacy of the
estimated model.

5 Simulation

In this Section to show the performance of the MLEs of the UITW regression model, two Monte Carlo
simulations are performed. The behavior of the MLEs is evaluated through the average estimates (AEs),
the mean square errors (MSEs) and the coverage rates (CRs) of the confidence intervals, calculated
from Equation (9). The simulations are carried out with sample size of n = {30, 60, 100, 200, 300}
and with R = 10, 000 replications.

In each experiment the values of the true parameters are the same, only the link function used is
changed. In the first experiment, the logit link function is chosen (Model I). In the second experiment,
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the Cauchy link function is used (Model II). The simulations were made using the matrix programming
language Ox Console (Doornik, 2018) through of the MaxBFGS function, with analytical derivatives.
The simulated models are given by

Modelo I: log (11 ) = P+ Bawio + Bawiz + Bariy

Ti

’ i = 17 LD
Modelo II: tan(w(n — 05)) = 61 + BQ.Z'Z'Q + 53.%}3 + ﬁ4l‘i4

where as covariates are generated from the standard normal distribution and are kept fixed in the
simulations. The true parameters adopted are: §; = 0.7, o = 1.5, 53 = —0.8, 54 = —2.4 and
¢ =3.3.

The following mechanism is used to simulate the response variable:

1. Generate z;, ~ N (0,1), m =2,3,4;

2. Write i = ﬁl + ﬁgl’ig + dezd + ﬂ4l’i4 and obtain T = gil(nl) = e"i/(l + e”i) (fOI' Modelo I)
and 7; = g~ (n;) = L arctan(n;) + 0.5 (for Modelo II);

3. From Equation (5), generate y; ~ UIW(7;, ¢).

The simulation results for models I and II are given in Tables 1 and 2, respectively. As can be seen,
in both models, when the sample size increases, the MLEs tend towards the true parameters and the
MSE:s decrease. Note also that when n grows, the CRs approach of the true nominal levels. All these
results show the consistency of the MLEs for the UIW regression model.

6 Application

In this section, the usefulness of the regression model in practice is shown from an application to real
data. The competitive regression models are the beta (Ferrari and Cribari-Neto, 2004), Kumaraswamy
(Mitnik and Baek, 2013) and the unit Weibull Mazucheli et al. (2020) regressions models. The pdfs
(for 0 < y < 1) of the beta, Kumaraswamy and unit Weibull regressions models are given by

r
folys 7. 0) = 1 o ((((11))_ _— YT (1 — gy)1eL
log 0.5 log0.5
fK(y;T7 (b) = J;é)g_wy(b_l(l — y(p)log(lf'r(?) !
and o
log0.5 (1 T llogu\®
foulyi ,0) = S DS (COBU) T (i),

where 0 < 7 < 1 denotes the mean (for beta model) and median (for Kumaraswamy and unit Weibull
models), ¢ > 0 is a shape parameter and I'(p) = f0°° uP~te "du, p > 0, is the gamma function. For
beta and Kumaraswamy models, ¢ can be interpreted as precision parameter.

The information criteria adopted for choosing the best model are: Akaike Information Criterion
(AIC), Bayesian Information Criterion (BIC) and Hannan—Quinn Information Criterion (HQIC).

AIC = —2£(n) + 2p,

BIC = —2L(n) + plogn
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Table 1: Simulation results for Modelo I.

CR
90% 95% 99%

30 53 0.69672 0.00966 86.06 91.50 97.48
Ba 1.49424 0.00606 85.44 91.26 97.29
B3 —0.79703 0.00859 85.57 91.38 96.90
Bs  —2.38082 0.01208 84.60 90.71 96.50
) 3.70372 0.51265 84.13 91.86 98.46
60 B 0.69871 0.00503 88.16 93.58 98.21
Ba 1.49596 0.00310 87.63 93.14 98.07
By —0.79712 0.00305 88.13 93.47 98.32
By —2.39031 0.00602 86.97 9275 97.92
) 3.48830 0.17335 86.86 93.46 98.66
100 54 0.69922 0.00307 88.51 94.03 98.48
Ba 1.49735 0.00186 88.59 93.79 98.57
B3 —0.79794 0.00196 89.03 94.56 98.62
Ba  —2.39748 0.00289 88.86 94.08 98.59
[0) 3.41008 0.08598 88.39 94.02 98.93
200 B4 0.69998 0.00157 89.15 94.33 98.69
Ba 1.49848 0.00101 89.71 94.75 98.86
B3  —0.79888 0.00096 89.26 94.30 98.69
Ba  —2.39847 0.00130 89.47 94.76 98.74
) 3.35650 0.03836 89.02 94.40 99.01
300 54 0.69965 0.00101 89.79 94.82 98.89
Ba 1.49953 0.00065 89.67 94.92 98.91
B3 —0.79973 0.00059 89.48 94.26 98.79
Bs  —2.39878 0.00078 89.17 94.30 98.81
) 3.33467 0.02411 89.18 94.86 98.95

n  Par AE MSE

and
HQIC = —2L(7) + 2plog(logn),

where £(7) is the log-likelihood evaluated in the MLE 1), p is the number of parameters in the model
and n is the number of observations. The best model is the one with the lowest values of these
information criteria.

The data from this application contains 32 observations concerning gasoline yield (Prater, 1956).
The response variable () is proportion of crude oil converted to gasoline after distillation and fraction-
ation. The exogenous variables are batch and temperature (°F) at which all the gasoline is vaporized.
The batch variable is a categorical variable denoting 10 different conditions involved in the experiment.

Since the model here is estimated considering the intercept, then one dummy variable is omitted.
The estimated model, under logit link function, is given by

T
1 7
08 (1 — T;

where (2, . .., Z;10) denotes the nine dummy variables and ;1 is the variable temperature.
All calculations were done using the BFGS method in the Ox Console programming language
(Doornik, 2018) with analytical derivatives. Table 3 presents the summary of the MLEs. As can be

11
) :Bl—i_ZB'mximv 1= 17"'7327
m=2
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Table 2: Simulation results for Modelo II.

CR

90% 95% 99%

30 4 0.68181 0.01860 86.04 92.10 97.72
Bo 1.51145 0.02403 85.66 91.44 97.18

Bs —0.81530 0.01997 8593 91.69 97.19

Bs —2.41789 0.07631 8549 91.59 97.13

0] 3.69455 0.48738 84.02 91.31 98.33

60 By 0.69114 0.00890 87.92 93.53 98.19
Ba 1.50769 0.01277 87.59 93.01 98.12

B3 —0.80658 0.00989 88.18 93.76 98.29

Bs —2.41009 0.03395 87.86 93.04 98.18

0] 3.48909 0.16359 86.58 92.99 98.64

100 By 0.69606 0.00514 88.28 94.09 98.54
B2 1.50616 0.00788 88.78 94.09 98.51

B3 —0.80263 0.00593 88.76 93.95 98.44

Bs —2.40804 0.01809 88.52 94.17 98.47

10) 3.41336 0.08068 88.08 93.59 98.91

200 B4 0.69765 0.00255 89.45 9441 98.66
Bo 1.50220 0.00412 89.29 94.73 98.81

Bs —0.80219 0.00296 89.38 94.38 98.91

By —2.40586 0.00797 89.82 94.57 98.67

0] 3.35809 0.03544 88.89 94.24 98.99

300 5 0.69842 0.00169 89.65 94.49 98.59
Ba 1.50184 0.00265 89.71 94.86 98.94

B3 —0.80149 0.00177 88.90 94.41 98.86

Bs —2.40243 0.00522 89.44 9455 98.75

0] 3.34024 0.02274 88.79 94.59 98.85

n  Par AE MSE

seen, for all four models, all estimated coefficients are highly significant. The information criteria,
shown in Table 4, indicate that the UIW model is the best model, since this model has the lowest AIC,
BIC and HQIC values.

Figure 4 shows the plots of the Dunn-Smith residuals and of the simulated envelope. This figure
reveals that the residuals present good behavior, indicating that the model is well estimated.

7 Conclusions

A new bi-parametric distribution is introduced in this paper. The new distribution has support in
the interval (0,1) and is obtained from a transformation of the inverse Weibull distribution. The failure
rate function of this new distribution can be increasing and bathtub-shaped.

Subsequently, based on this distribution, a regression model is proposed. This model has a
regression structure at the median. The unknown parameters are obtained by the maximum likelihood
method. Analytical expressions for the score vector and for the Fisher observed information matrix are
demonstrated.

Monte Carlo simulation studies demonstrate the good consistency of the maximum likelihood
estimators. Finally, an application to real Petroleum data is performed, showing that the proposed
regression model is better than three others known regression models.
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Table 3: Summary of the MLEs.

Par  Estimate Std. error p-value Estimate  Std. error  p-value
UIlw unit Weibull

B —5.99149  0.17483 0.00000 —6.42857 0.21942  0.00000
Ba 1.67859  0.09041 0.00000 1.66828 0.09478  0.00000
B3 1.17744  0.08981 0.00000 1.45079 0.11858 0.00000
Ba 1.46966  0.08865 0.00000 1.65779 0.12960 0.00000
Bs 0.94507  0.07936 0.00000 1.11451 0.09897 0.00000
Be 1.03651  0.07763 0.00000 1.21315 0.10626  0.00000
Br 0.92085  0.08158 0.00000 1.10537 0.10354  0.00000
Bs 0.46318  0.07898 0.00000 0.53008 0.12999  0.00005
Bo 0.42795  0.08204 0.00000 0.46854 0.12087 0.00011
Bio 0.29092  0.09352 0.00187 0.41987 0.11747 0.00035
B 0.01077  0.00042 0.00000 0.01157 0.00051 0.00000

¢ 21.79434  3.30620 0.00000 16.76020 2.35583  0.00000

Kumaraswamy beta

B —6.27295  0.15239 0.00000 —6.15957 0.18232  0.00000
Ba 1.82388  0.09804 0.00000 1.72773 0.10123  0.00000
B3 1.24510  0.09688 0.00000 1.32260 0.11790 0.00000
Ba 1.51274  0.09913 0.00000 1.57231 0.11610 0.00000
Bs 0.98056  0.08810 0.00000 1.05971 0.10236  0.00000
Be 0.98650  0.09343 0.00000 1.13375 0.10352  0.00000
Br 0.93776  0.09311 0.00000 1.04016 0.10604 0.00000
Bs 0.40937  0.08569 0.00000 0.54369 0.10913  0.00000
Bo 0.39060  0.08951 0.00001 0.49590 0.10893  0.00001
Bio 0.31594  0.10030 0.00163 0.38579 0.11859 0.00114
b1 0.01153  0.00036 0.00000 0.01097 0.00041  0.00000

¢ 11.02289  1.38850 0.00000 440.27838 110.02562 0.00006

Table 4: Information criteria.

Model AIC BIC HQIC
UIW —150.0440 —132.4551 —144.2138
unit Weibull ~ —138.8193 —121.2305 —132.9891

Kumaraswamy —143.2682 —125.6793 —137.4380
beta —145.5951 —128.0063 —139.7649




Announcement Effects of Capital Increase during the 2008 Global Financial Crisis

(a) residuals versus index
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Figure 4: Dunn-Smith residuals.
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